Deep Sediment-Sourced Methane Contribution to Shallow Sediment Organic Carbon: Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico

نویسندگان

  • Richard B. Coffin
  • Christopher L. Osburn
  • Rebecca E. Plummer
  • Joseph P. Smith
  • Paula S. Rose
  • Kenneth S. Grabowski
  • Enrico Sciubba
چکیده

Coastal methane hydrate deposits are globally abundant. There is a need to understand the deep sediment sourced methane energy contribution to shallow sediment carbon relative to terrestrial sources and phytoplankton. Shallow sediment and porewater samples were collected from Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico near a seafloor mound feature identified in geophysical surveys as an elevated bottom seismic reflection. Geochemical data revealed off-mound methane diffusion and active fluid advection on-mound. Gas composition (average methane/ethane ratio ~11,000) and isotope ratios of methane on the mound (average δ13CCH4(g) = −71.2‰; Δ14CCH4(g) = −961‰) indicate a deep sediment, microbial source. Depleted sediment organic carbon values on mound (δ13CSOC = −25.8‰; Δ14CSOC = −930‰) relative to off-mound (δ13CSOC = −22.5‰; OPEN ACCESS Energies 2015, 8 1562 Δ14CSOC = −629‰) suggest deep sourced ancient carbon is incorporated into shallow sediment organic matter. Porewater and sediment data indicate inorganic carbon fixed during anaerobic oxidation of methane is a dominant contributor to on-mound shallow sediment organic carbon cycling. A simple stable carbon isotope mass balance suggests carbon fixation of dissolved inorganic carbon (DIC) associated with anaerobic oxidation of hydrate-sourced CH4 contributes up to 85% of shallow sediment organic carbon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraining Gas Hydrate Occurrence in the Northern Gulf of Mexico Continental Slope: Fine Scale Analysis of Grain-size in Hydrate-bearing Sediments

Within the subseafloor, methane hydrates form within the gas hydrate stability zone (GHSZ). Two areas within the Gulf of Mexico (GOM) were investigated in this study: Keathley Canyon and Atwater Valley. The GOM contains an underlying petroleum system and deeply buried, yet dynamic salt deposits. Salt tectonics and fluid expulsion upward through the sediment column lead to the formation of fract...

متن کامل

Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf

In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a reg...

متن کامل

Gulf of Mexico hypoxia: alternate states and a legacy.

A 20+ year data set of the size of the hypoxic zone off the Louisiana-Texas coast is analyzed to reveal insights about what causes variation in the size of the hypoxic zone in summer, the accumulation of carbon storage in sediments, and pelagic and sediment oxygen demand. The results of models support the conclusion that some of this variation can be explained by a higher sedimentary oxygen dem...

متن کامل

Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico

An integrated lipid biomarker–carbon isotope approach reveals new insight to microbial methane oxidation in the Gulf of Mexico gas-hydrate system. Hydrate-bearing and hydrate-free sediments were collected from the Gulf of Mexico slope using a research submersible. Phospholipid fatty acids consist mainly of C16–C18 compounds, which are largely derived from bacteria. The phospholipid fatty acids ...

متن کامل

Contribution of Vertical Methane Flux to Shallow Sediment Carbon Pools across Porangahau Ridge, New Zealand

Moderate elevated vertical methane (CH4) flux is associated with sediment accretion and raised fluid expulsion at the Hikurangi subduction margin, located along the northeast coast of New Zealand. This focused CH4 flux contributes to the cycling of inorganic and organic carbon in solid phase sediment and pore water. Along a 7 km offshore transect across the Porangahau Ridge, vertical CH4 flux r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015